添加网站文件
This commit is contained in:
206
vendor/khanamiryan/qrcode-detector-decoder/lib/common/GlobalHistogramBinarizer.php
vendored
Normal file
206
vendor/khanamiryan/qrcode-detector-decoder/lib/common/GlobalHistogramBinarizer.php
vendored
Normal file
@@ -0,0 +1,206 @@
|
||||
<?php
|
||||
/*
|
||||
* Copyright 2009 ZXing authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
namespace Zxing\Common;
|
||||
|
||||
use Zxing\Binarizer;
|
||||
use Zxing\LuminanceSource;
|
||||
use Zxing\NotFoundException;
|
||||
|
||||
/**
|
||||
* This Binarizer implementation uses the old ZXing global histogram approach. It is suitable
|
||||
* for low-end mobile devices which don't have enough CPU or memory to use a local thresholding
|
||||
* algorithm. However, because it picks a global black point, it cannot handle difficult shadows
|
||||
* and gradients.
|
||||
*
|
||||
* Faster mobile devices and all desktop applications should probably use HybridBinarizer instead.
|
||||
*
|
||||
* @author dswitkin@google.com (Daniel Switkin)
|
||||
* @author Sean Owen
|
||||
*/
|
||||
|
||||
class GlobalHistogramBinarizer extends Binarizer {
|
||||
|
||||
private static $LUMINANCE_BITS = 5;
|
||||
private static $LUMINANCE_SHIFT=3;
|
||||
private static $LUMINANCE_BUCKETS = 32;
|
||||
|
||||
private static $EMPTY = array();
|
||||
|
||||
private $luminances=array();
|
||||
private $buckets = array();
|
||||
private $source = array();
|
||||
|
||||
public function __construct($source) {
|
||||
|
||||
self::$LUMINANCE_SHIFT = 8 - self::$LUMINANCE_BITS;
|
||||
self::$LUMINANCE_BUCKETS = 1 << self::$LUMINANCE_BITS;
|
||||
|
||||
parent::__construct($source);
|
||||
|
||||
$this->luminances = self::$EMPTY;
|
||||
$this->buckets = fill_array(0, self::$LUMINANCE_BUCKETS,0);
|
||||
$this->source = $source;
|
||||
}
|
||||
|
||||
// Applies simple sharpening to the row data to improve performance of the 1D Readers.
|
||||
//@Override
|
||||
public function getBlackRow($y, $row=null) {
|
||||
$this->source = $this->getLuminanceSource();
|
||||
$width = $this->source->getWidth();
|
||||
if ($row == null || $row->getSize() < $width) {
|
||||
$row = new BitArray($width);
|
||||
} else {
|
||||
$row->clear();
|
||||
}
|
||||
|
||||
$this->initArrays($width);
|
||||
$localLuminances = $this->source->getRow($y, $this->luminances);
|
||||
$localBuckets = $this->buckets;
|
||||
for ($x = 0; $x < $width; $x++) {
|
||||
$pixel = $localLuminances[$x] & 0xff;
|
||||
$localBuckets[$pixel >> self::$LUMINANCE_SHIFT]++;
|
||||
}
|
||||
$blackPoint = $this->estimateBlackPoint($localBuckets);
|
||||
|
||||
$left = $localLuminances[0] & 0xff;
|
||||
$center = $localLuminances[1] & 0xff;
|
||||
for ($x = 1; $x < $width - 1; $x++) {
|
||||
$right = $localLuminances[$x + 1] & 0xff;
|
||||
// A simple -1 4 -1 box filter with a weight of 2.
|
||||
$luminance = (($center * 4) - $left - $right) / 2;
|
||||
if ($luminance < $blackPoint) {
|
||||
$row->set($x);
|
||||
}
|
||||
$left = $center;
|
||||
$center = $right;
|
||||
}
|
||||
return $row;
|
||||
}
|
||||
|
||||
// Does not sharpen the data, as this call is intended to only be used by 2D Readers.
|
||||
//@Override
|
||||
public function getBlackMatrix(){
|
||||
$source = $this->getLuminanceSource();
|
||||
$width = $source->getWidth();
|
||||
$height = $source->getHeight();
|
||||
$matrix = new BitMatrix($width, $height);
|
||||
|
||||
// Quickly calculates the histogram by sampling four rows from the image. This proved to be
|
||||
// more robust on the blackbox tests than sampling a diagonal as we used to do.
|
||||
$this->initArrays($width);
|
||||
$localBuckets = $this->buckets;
|
||||
for ($y = 1; $y < 5; $y++) {
|
||||
$row = intval($height * $y / 5);
|
||||
$localLuminances = $source->getRow($row, $this->luminances);
|
||||
$right = intval(($width * 4) / 5);
|
||||
for ($x = intval($width / 5); $x < $right; $x++) {
|
||||
$pixel = intval32bits($localLuminances[intval($x)] & 0xff);
|
||||
$localBuckets[intval32bits($pixel >> self::$LUMINANCE_SHIFT)]++;
|
||||
}
|
||||
}
|
||||
$blackPoint = $this->estimateBlackPoint($localBuckets);
|
||||
|
||||
// We delay reading the entire image luminance until the black point estimation succeeds.
|
||||
// Although we end up reading four rows twice, it is consistent with our motto of
|
||||
// "fail quickly" which is necessary for continuous scanning.
|
||||
$localLuminances = $source->getMatrix();
|
||||
for ($y = 0; $y < $height; $y++) {
|
||||
$offset = $y * $width;
|
||||
for ($x = 0; $x< $width; $x++) {
|
||||
$pixel = intval($localLuminances[$offset + $x] & 0xff);
|
||||
if ($pixel < $blackPoint) {
|
||||
$matrix->set($x, $y);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return $matrix;
|
||||
}
|
||||
|
||||
//@Override
|
||||
public function createBinarizer($source) {
|
||||
return new GlobalHistogramBinarizer($source);
|
||||
}
|
||||
|
||||
private function initArrays($luminanceSize) {
|
||||
if (count($this->luminances) < $luminanceSize) {
|
||||
$this->luminances = array();
|
||||
}
|
||||
for ($x = 0; $x < self::$LUMINANCE_BUCKETS; $x++) {
|
||||
$this->buckets[$x] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
private static function estimateBlackPoint($buckets){
|
||||
// Find the tallest peak in the histogram.
|
||||
$numBuckets = count($buckets);
|
||||
$maxBucketCount = 0;
|
||||
$firstPeak = 0;
|
||||
$firstPeakSize = 0;
|
||||
for ($x = 0; $x < $numBuckets; $x++) {
|
||||
if ($buckets[$x] > $firstPeakSize) {
|
||||
$firstPeak = $x;
|
||||
$firstPeakSize = $buckets[$x];
|
||||
}
|
||||
if ($buckets[$x] > $maxBucketCount) {
|
||||
$maxBucketCount = $buckets[$x];
|
||||
}
|
||||
}
|
||||
|
||||
// Find the second-tallest peak which is somewhat far from the tallest peak.
|
||||
$secondPeak = 0;
|
||||
$secondPeakScore = 0;
|
||||
for ($x = 0; $x < $numBuckets; $x++) {
|
||||
$distanceToBiggest = $x - $firstPeak;
|
||||
// Encourage more distant second peaks by multiplying by square of distance.
|
||||
$score = $buckets[$x] * $distanceToBiggest * $distanceToBiggest;
|
||||
if ($score > $secondPeakScore) {
|
||||
$secondPeak = $x;
|
||||
$secondPeakScore = $score;
|
||||
}
|
||||
}
|
||||
|
||||
// Make sure firstPeak corresponds to the black peak.
|
||||
if ($firstPeak > $secondPeak) {
|
||||
$temp = $firstPeak;
|
||||
$firstPeak = $secondPeak;
|
||||
$secondPeak = $temp;
|
||||
}
|
||||
|
||||
// If there is too little contrast in the image to pick a meaningful black point, throw rather
|
||||
// than waste time trying to decode the image, and risk false positives.
|
||||
if ($secondPeak - $firstPeak <= $numBuckets / 16) {
|
||||
throw NotFoundException::getNotFoundInstance();
|
||||
}
|
||||
|
||||
// Find a valley between them that is low and closer to the white peak.
|
||||
$bestValley = $secondPeak - 1;
|
||||
$bestValleyScore = -1;
|
||||
for ($x = $secondPeak - 1; $x > $firstPeak; $x--) {
|
||||
$fromFirst = $x - $firstPeak;
|
||||
$score = $fromFirst * $fromFirst * ($secondPeak - $x) * ($maxBucketCount - $buckets[$x]);
|
||||
if ($score > $bestValleyScore) {
|
||||
$bestValley = $x;
|
||||
$bestValleyScore = $score;
|
||||
}
|
||||
}
|
||||
|
||||
return intval32bits($bestValley << self::$LUMINANCE_SHIFT);
|
||||
}
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user